Real-Coded Genetic Algorithms and
Interval-Schemata

Larry J. Eshelman and J. David Schaffer
Philips Laboratories
North American Philips Corporation
345 Scarborough Road
Briarcliff Manor, New York 10510

Abstract

In this paper we introduce interval-schemata as a tool for analyzing real-
coded genetic algorithms (GAs). We show how interval-schemata are anal-
ogous to Holland’s symbol-schemata and provide a key to understanding
the implicit parallelism of real-valued GAs. We also show how they support
the intuition that real-coded GAs should have an advantage over binary
coded GAs in exploiting local continuities in function optimization. On
the basis of our analysis we predict some failure modes for real-coded GAs
using several different crossover operators and present some experimen-
tal results that support these predictions. We also introduce a crossover
operator for real-coded GAs that is able to avoid some of these failure
modes.

1 INTRODUCTION

A growing number of researchers in the genetic algorithm (GA) community have
come to champion real-coded (or floating-point) genes as opposed to binary-coded
genes, in spite of the fact that there are theoretical arguments purporting to show
that small alphabets should be more effective than large alphabets. Although a
few theorists have taken on this argument (Antonisse, 1989; Wright, 1991), the
standard defense has been the practical one that experience shows that real-coded
genes work better (Davis, 1991a). In this paper we take on the task of giving a the-
oretical defense of real-coded GAs. In the past such GA-heretics have been a small

187

88 Eshelman and Schaffer

minority, who were largely ignored, but recently their numbers have been growing.
Furthermore, in the last few years the GA community has begun to pay attention
to the work of the Evolutionary Strategy approach in Europe which has from the
beginning used real-coded genes (Back, Hoffmeister & Schwefel, 1991). Finally,
descendents of the Evolutionary Programming approach have recently published a
critique of GAs using binary coding and crossover, arguing that gaussian mutation
on real-coded genes can be counted on to work well for a larger class of problems
(Fogel & Atmar, 1990). (For more details on the history of real-coded GAs see

Goldberg (1990).)

Although a number of advantages have been offered, we believe that three have
been the primary motivation for real-coded GAs. First, real-coding of the genes
eliminates the worry that there is adequate precision so that good values are repre-
sentable in the search space. Whenever a parameter is binary coded, there is always
the danger that one has not allowed enough precision to represent parameter values
that produce the best solution values. Second, the range of a parameter does not
have to be a power of two. Third, GAs operating on real-coded genes have the
ability to exploit the gradualness of functions of continuous variables (where grad-
ualness is taken to mean that small changes in the variables correspond to small
changes in the function) (Wright, 1991).

In this paper we will concentrate on the third feature. Strictly speaking, the first
point does not distinguish real-coded GAs from binary coded GAs. All computer
solution methods require a discretization and hence a Nyquist-like assumption (i.e.,
no large variations between sample points). Given that computers have limited pre-
cision and “real-coded” (i.e., floating-point) values can be mapped onto integers,
we will focus on what might be more properly called integer-coded GAs. (Several
methods have been suggested for dealing with the precision problem without glv-
ing up a binary representation (Schraudolph & Belew, 1991; Shaefer, 1987).) We
will not address the second alleged advantage, but will assume that the param-
eters of an integer-coded GA range over the same set of values as binary coded
parameters—powers of two. In other words, it will be assumed that GAs that we
will be comparing will use representations that have the same range and precision
for any given function. The only difference is that the integer-coded GA will create
new individuals by operating on strings of integers rather than bit strings. This
approach allows us to use the same functions for comparing the performance of a
GA that uses integer coding with a traditional GA that uses binary coding.

2 INTERVAL-SCHEMATA AND CROSSOVER

Most of the theoretical objections to real-coded GAs assume that the crossover oper-
ator operates at parameter boundaries (e.g., Goldberg, 1990, 1991). But many im-
plementors of real-coded GAs use more vigorous forms of crossover. Davis combines
parameter-bounded crossover with a crossover operator that averages (some of) the
parameters (Davis, 1991a). Wright’s linear crossover operator creates three off-
spring: Treating the two parents as two points, p; and py, one child is the midpoint
of p; and p, and the other two lie on a line determined by p1 and py: 1.5p; — 0.5p,
and —0.5p; +1.5p, (Wright, 1991). Radcliffe’s flat crossover chooses parameters for
an offspring by uniformly picking parameter values between (inclusively) the two

Real-Coded Genetic Algorithms and Interval-Schemata 189

— I e I ste— oy —

b1 b2
Figure 1: BLX-«

parents parameter values (Radcliffe, 1990). We use a crossover operator that is a
generalization of Radcliffe’s which we call blend crossover (BLX-&). It uniformly
picks values that lie between two points that contain the two parents, but may
extend equally on either side determined by a user specified GA-parameter (see
Figure 1). For example, BLX-0.5 picks parameter values from points that lie on
an interval that extends 0.5 on either side of the interval I between the parents.
(These are the extrema used by Wright.) BLX-0.0, on the other hand, is equivalent
to Radcliffe’s flat crossover. (Of course, there are many other possible versions of
crossover that operate on integer or real-coded parameters.)

What all these crossover operators have in common is that they exploit the param-
eter intervals determined by the parents rather than the patterns of symbols they
share. Holland’s language of schemata was developed for strings of symbols. We
feel that this terminology is too restrictive for analyzing real-coded GAs. Something
analogous, yet distinct, is needed for GAs that manipulate interval values rather
than bit values. We suggest that the relevant concept is an interval-schema.

Let n = 2L be the size of the range for integers that could be coded as L-bit strings.
The number of interval-schemata (including all possible subranges) that can be
defined over this range of integers is:

“ . n(n+1)
$oi- 2t

=1

Thus, 36 interval-schemata can be defined for a parameter whose range is [0,7].
There are two interval-schemata of length 7, [0,6] and [1,7]. At the other extreme
are the 8 short interval-schemata, [0, 0], [1,1], etc. Every specific parameter value
is a member of at least n interval-schemata (points that lie at the extrema) and up
to a maximum of |(n+1)?/4] interval-schemata (points that lie in the center of the
interval). In particular, a value of k for the parameter that ranges from [0, n — 1]
is a member of (k + 1)(n — k) interval-schemata. Furthermore, the two points at
positions k; and ky k1 < ky have (k; + 1)(n — k2) interval-schemata in common.

It should be noted that interval-schemata are similar to Wright’s connected
schemata (Wright, 1991). Both interval-schemata and connected schemata are con-
cerned with intervals. However, connected schemata are like ordinary schemata
except the “don’t-cares” are restricted to the lower order bits. Thus, 01f:##
corresponds to the interval [8,15] (assuming binary coding). The problem with
this way of analyzing intervals is that some intervals are not representable with
symbol-schemata—for example, no single symbol-schema describes the interval
7, 10;1. Thus, according to Wright’s analysis for a parameter of range [0, n — 1] there
are 2°*! — 1 connected schemata, far fewer than the n(n + 1)/2 interval-schemata
(where n = 2L) identified by our analysis.

)0 Eshelman and Schaffer

Of course, if this is to be more than an abstract counting exercise it must be related
to how the algorithm samples interval-schemata. Clearly any selection mechanism
that allocates exponentially increasing trials to the observed best individuals will
also allocate exponentially increasing trials to the observed best interval-schemata.
So the important question is how crossover preserves and explores interval-schemata.

Parameter-bounded crossover, Davis’s averaging operator, and Radcliffe’s flat
crossover (BLX-0.0) all have the property that the offspring are members of the
same interval-schemata of which the parents are common members. (In Radcliffe’s
terms, these operators are “respectful.”) These algorithms differ, however, as to
how many new interval-schemata are potentially reachable in a single crossover
event. Parameter-bounded crossover and averaging crossover are both strongly bi-
ased toward certain interval-schemata over others. BLX-0.0, on the other hand, is
much less biased in this respect, although it does have a bias toward points near
the center of the interval. It should be noted that this difference in reachability
has a parallel for symbol-schemata using either two-point crossover (2X) or uni-
form crossover (UX). Because UX eliminates the positional bias of 2X, many more
schemata are potentially reachable via a single crossover event using UX than 2X
(Eshelman, 1991).

The negative side of greater reachability is that repeated applications of 'such a
crossover operator are also more likely to disrupt the schemata that make the two
parents better than average. As we have argued elsewhere, however, for a GA
to be effective, it must not simply preserve schemata, it must test them in new
contexts, and this entails disrupting schemata (Schaffer, Eshelman, & Offutt, 1991).
Furthermore, we have shown that by combining a disruptive crossover operator
with a conservative selection mechanism that maintains a population of the best
M individuals seen so far (where M is the population size) one often gets the best
of both worlds—vigorously testing schemata in new contexts while preserving the
best schemata discovered so far.

The way an interval-processing GA (IPGA) processes interval-schemata is analo-
gous to the way a symbol-processing GA (SPGA) processes symbol-schemata. To
understand the parallel, it is important to note that long interval-schemata corre-
spond roughly to low order symbol-schemata. Both are characterized by not being
very specific. As search progresses a SPGA will progressively focus its search on
higher order schemata whereas an IPGA will progressively focus on shorter interval-
schemata. In the former case, the SPGA has narrowed the search down to certain
partitions, whereas in the latter case the IPGA has narrowed the search to cer-
tain contiguous regions. The interval-schemata that are being searched are those
bounded by the parameter extrema contained in the population. As these values
narrow, the search becomes more and more focused, taking its samples from a
smaller and smaller region of the parameter range. In this way an IPGA exploits
the local continuities of the function.

Finally, it should be noted that the above analysis is easily extendible to multi-
parameter functions. If the function has two parameters, for example, then each
Instance (point in a two dimensional space) is a member of a set of rectangle-
schemata. The number of rectangle-schemata that a particular instance is a member
of will be the product of the number of intervals the first parameter is a member of
times the number of intervals the second parameter is a member of.

Real-Coded Genetic Algorithms and Interval-Schemata 191
3 FAILURE MODES OF AN IPGA

Every successful search algorithm exploits some biases allowing it to favor some
samples over others. Every bias also has an Achilles’ heal—a problem can always
be devised that will mislead a search method depending on a special bias. An IPGA
Is no exception. If the problem has no local (Euclidean) continuities, or if they lead
away from the optimal solution, then an IPGA is likely to have difficulties. In this
section we are concerned, however, with failure modes that arise even for problems
that on the surface appear as natural for an IPGA as a SPGA. We shall concen-
trate on two failure modes: failure to propagate good schemata and premature
convergence.

3.1 FAILURE TO PROPAGATE GOOD SCHEMATA

There are a number of situations where an IPGA will have difficulty propagating
good schemata, but it is instructive to consider an extreme case—a needle on a
plateau. In other words, there is only a single value in the interval that is good, and
all other values are equally bad. Of course, finding the optimum will be equally hard
for a SPGA as an IPGA. However, suppose that the function consists of a number of
independent needle-on-a-plateau genes, or suppose the genes have some structure,
but there is a plateau in the region of the optimum. The successful algorithm
requires a crossover operator that has a fairly high likelihood of passing on to the
offspring those genes that are by chance the optimum allele. Clearly, 2X has this
property, since it has a relatively high probability in a many-gene problem of passing
on any single gene intact. Perhaps less obvious, UX will also be more successful than
BLX-0.0 at propagating optimal values when surrounded by a plateau. If we look
at the extreme case where an optimum value is crossed over with its complement,
the cases appear the same. Suppose the optimum lies at one of the extrema of a,
parameter that ranges over 27 values—e.g., it is coded as the integer 0 for an IPGA
and a string of I zeros for a SPGA with binary coding. Then if the parameter is
crossed over with its complement (i.e., 2F — 1 in the case of the IPGA and I ones
in the case of a SPGA) to produce a single child, there is only a 1/2% probability
of the allele surviving in the child. Although the probability of propagating the
allele is the same in the worst case, this is not the typical situation. To see this, the
important thing to note is that if there is no structure around the optimum, then
the mate is likely to be a random individual in this range.! In the case of BLX-
0.0 the expected value of a randomly generated gene will differ from the optimum
by one half the range, and in the case of UX one half the bits. In other words,
the probability of propagating the optimum when mated with a randomly chosen
individual is 2 x 1/2F = 1/2L-1 fo; BLX-0.0, whereas it is 1/2%/2 for UX. If the
optimum lies in the center rather than an extrema, the probability of propagating
the optimum doubles for BLX to 1 /252 since the expected distance of a randomly
chosen value from the optimum is now 1 /4 rather than 1/2, but for intervals coded

'This needs to be qualified. Initially, when the optimum is first discovered, the values
on the plateau will tend to be random. But as this optimum value is repeatedly crossed
over with other values, to the extent that some offspring survive these matings, there is a
tendency for the nonoptimum values to pick up “fragments” from the optimum allele and
todrift in the “direction” of the optimum for both a SPGA and an IPGA.

)2 Eshelman and Schaffer

with more than four bits, UX will still have a higher likelihood of propagating the
optimum than BLX-0.0.

3.2 PREMATURE CONVERGENCE

In order for a GA to make progress it must focus its search. Convergence of the
population is the necessary consequence of this. Unfortunately, it is highly likely
that some of the observed correlations will be spurious (due to sampling error) so
that the population may converge to a suboptimal region, discarding schemata that
contain the optimum. No search algorithm that uses its prior samples to bias its
future samples is immune to sampling error. As we have argued elsewhere, however,
the less disruptive a crossover operator is, the more susceptible the algorithm will be
to sampling error (Schaffer, Eshelman & Offutt, 1991). Furthermore, some functions
are more likely to present misleading samples (e.g., deceptive functions) than others.
The strength of BLX-0.0 is that it produces its samples in the contiguous regions
defined by the points contained in the population. This means that BLX-0.0 is less
likely to prematurely converge to the values that correspond to the lower order bits.
(We will make an important qualification to this below.) 2X, on the other hand, is
much more likely to prematurely converge on the lower order bits. 2X is good at
preserving contiguous chunks of the chromosome intact, whereas BLX-0.0 is good
at testing small variations of contiguous chunks (at least for the lower order bits).
Unlike 2X, UX has no positional bias. It will be better at searching the lower order
bits than 2X, but not as good as BLX-0.0.

BLX-0.0 pays a price, however, for this ability to exploit local information. To
understand this, we need to look at what it means for the population to converge for
an IPGA. Again, it is helpful to first examine the parallel phenomenon in a SPGA.
In discussing schemata it is typically noted that a population of size M consisting
of bit strings of length L contains between 2& and M 2% schemata. As a counting
exercise this is true, but what is critical is how many new schemata potentially can
be sampled in the population by crossover. If all the bits are converged, then the
population consists of identical members, each of which has the same 2% schemata.
However, since there is nothing to cross over, no new schemata are being sampled.
More generally, the number of schemata that are relevant to search is between 27
and M * 2P where D is the number of bits of L that are not completely converged
to the same alleles. The same holds for interval-schemata. The number of interval-
schemata being searched by a GA using BLX is limited by the maximum and
minimum values of the parameters represented in the population. Just as 2X or
UX cannot introduce new alleles, BLX-0.0 cannot extend the interval ranges.

IPGAs that operate on large intervals share with SPGAs that use a large cardinality
alphabet a particularly serious failure mode—premature convergence in the first
generation. If the range of the parameters (or cardinality of the alphabet) is large
relative to the population size, then the algorithm is quite likely to start its search
without some values represented. This is a fatal weakness for an IPGA if the optimal
point is at one of the extrema of the interval, for a crossover operator bounded by
the two points determined by the parents (as in the case of BLX-0.0) will never be
able to find the optimum unless it is enveloped by the original population. More
generally, unless the extrema in the initial population envelop the optimal point, it
cannot be reached via BLX-0.0 (or parameter-bounded or average crossover). This

Real-Coded Genetic Algorithms and Interval-Schemata 193

fact is consistent with our analysis of interval-schemata. Of course, even if the
initial population contains extrema that straddle the optimal point, this may be of
no value if the points on one side of the optimal point are very poor so that they
don’t survive. (Imagine the optimum is at the bottom of an incline that abuts a
cliff, so that it can be approached from only one side—any point sampled on the
other side of the optimum won’t survive.) ’

This problem of optimal-extrema can be overcome by letting the range from which
an offspring is chosen extend on either side of the interval defined by the parents’
parameter values (i.e., let & > 0). We note that in the absence of selection pressure
all values for o < 0.5 will exhibit a tendency to population convergence toward
allele values in the center of their ranges. Only when o = 0.5 does the probability
that an offspring will lie outside its parents become equal to the probability that it
will lie between its parents. In other words, o = 0.5 balances the convergent and
divergent tendencies in the absence of selection pressure.

Although it is no longer the case that the child will be a member of the same
interval-schemata that the parents share, the algorithm still narrows its focus as
the search progresses, and thus differs from mutation.? But this process is no
longer monotonic. Whenever a point is sampled that lies outside the population
extrema and survives, the extrema are expanded. In the long run the extrema will
narrow (assuming that there is local structure to the function), but in the process
of narrowing and widening the algorithm now can also shift its focus laterally.

4 EMPIRICAL COMPARISONS

We have two goals in this section: (1) to test whether BLX-« is susceptible to the
failure modes predicted in the previous section, and (2) to test how well a GA using
BLX-& does on a range of functions in comparison to other crossover operators.

4.1 FAILURE MODE TESTS

We devised four functions to test BLX-a’s predicted failure modes. Qur purpose
in choosing these functions was not to come up with challenging problems, but
to choose a set of simple functions that will enable us to test the failure modes
predicted in the previous section.

We tested each function using both a traditional GA and CHC (Eshelman, 1991).
In order to place the emphasis on the effects of crossover, no mutation was used in
either algorithm. CHC differs from the traditional GA in several respects: (1) Cross
generational elitist selection: the parent and child populations are merged and the
best M individuals are chosen, where M is the population size. (2) Heterogeneous
recombination (incest prevention): only individuals who are sufficiently different
(in terms of Hamming distance) are mated. (3) Cataclysmic mutation (restarts):
only crossover is used to produce new offspring, but when the population converges,
massive mutations are applied, preserving the best individual intact, and the search
is resumed using only crossover. We tested four crossover operators: BLX-0.0,
BLX-0.5, 2X, and HUX. (HUX is like UX, except exactly half the differing bits

. *See section 5 for a discussion of BLX-a’s relationship with mutation.

Eshelman and Schaffer

f-incline -V f-cliff

Figure 2: Failure mode test functions

Table 1: Failure Mode Tests

Number of times optimum found and trials to convergence
f-needles f-incline -V f-cliff
opt trials | opt trials | opt trials | opt trials
BLX-0.0 | 21 1597 0 1895 | 50 734 0 1926
BLX-0.5 | 20 1751 | 50 1418 | &0 968 | 49 1795
HUX 35 1409 | 47 1177 | 44 1153 | 47 1154
2X 29 831 9 1175 | 15 1175 8 1188
Tr-GA 11 1513 3 2111 0 1939 1 1563

are swapped at random.) FEach of the four operators produces two children per
mating. In each case, we used a population size of 50 and halted the search when
either the minimum was found or the population converged (with no restarts). The
traditional GA used proportional selection, the elitist strategy, a population size of
50, no mutation, and 2X with a crossover rate of 1.0.

The first function, f-needles, was devised to test the hypothesis that BLX-o would
have difficulty in certain circumstances propagating good schemata. f-needles con-
sists of five needles on five plateaus: for each of the five 6-bit genes a value of zero is
given if the pattern is 111111 (i.e., 42 in gray code), and a value of one for all other
patterns. The next three functions were devised to test the hypothesis concerning
premature convergence (see Figure 2). The first, f-incline, is a simple incline problem
with the minimum (the optimum) at one extreme: f(z) = z. The second, -V, is a
double incline or V function with the minimum at the center: f(z) = |range/2—z|.
The third, f-cliff, is similar to f-V except that the left incline has been raised so that
there is a cliff on one side of the minimum: f(z) = = — range/2 if(z > range/2)
otherwise f(z) = (6 x range/10) — z. For these three functions, z ranges from 0
to 230 — 1. For the SPGA tests the 30 bit string was interpreted as gray coded.

The results, averaged for 50 replications, are reported in Table 1. Our prediction
that needles-on-plateaus would be relatively harder for BLX-a than HUX or 2X
is confirmed by BLX-0.0’s and BLX-0.5’s worse performance on f-needles. Also

Real-Coded Genetic Algorithms and Interval-Schemata 195

as predicted, BLX-0.0 has difficulties on f-incline and f-cliff, but does quite well
on -V where the optimum lies in the center. The good performance of BLX-
0.5 on these problems indicates that extending the interval outside the extrema
determined by the parents overcomes a major shortcoming of BLX-0.0. Finally,
the poor performance of 2X (for both a traditional GA and CHC) may come as
somewhat of a surprise. It should be kept in mind, however, that no mutation was
used with any of these runs, and a relatively small population size (50). The main
failure mode for 2X on these functions is premature convergence—and in the case of
the latter three functions, premature convergence on the lower order bits. Uniform
crossover (HUX) is much less susceptible to this, and BLX-0.5 is even less so.

4.2 PERFORMANCE TESTS

We have seen that BLX-0.0 is susceptible to several failure modes as predicted, but
that one of these shortcomings, the inability to sample parameter values that lie
outside the extrema represented in the population can be overcome by using BLX-
0.5. Our goal in this section is to discover how well BLX-0.5 performs relative to a
crossover operator that operates on bit strings.

As our test suite we used a set of 11 functions for which we have extensive per-
formance data (Schaffer, Caruana, Eshelman & Das, 1989; Eshelman & Schaffer,
1991; Eshelman, 1991). There are twelve problems in the test suite, but one of
them (f10, a graph partitioning problem) is by nature a binary problem and so was
not suitable for BLX-a. To these 11 we added two functions that other researchers
have reported pose challenges to binary coded GAs—f13 and f14.

f13 is a function studied by Fogel and Atmar requiring the solving of a system of 10
linear equations with a 1.0 probability of the off-diagonal coefficient being non-zero
(Fogel & Atmar, 1990). f14 is a 45 variable dynamic control problem studied by
Janikow and Michalewicz (1991). For 13 we used 8-bit parameters and for f14,
10-bit parameters. (The binary representations of all functions were interpreted as
gray coded.)

Table 2 summarizes some of the features of the thirteen functions. We used several
variants of Davis’s random bit-climber (i-e., an iterative, bit-wise hillclimber) as
a measure of the difficulty of these functions (Davis, 1991b). Functions for which
some version of the bit-climber significantly outperformed all versions of the GA
were given an Easy rating, whereas functions for which some version of the GA
significantly outperformed the bit-climber were given a Hard rating.3 Functions for
which the best version of the bit-climber and the GA performed about the same
were given a Moderate rating.

We used CHC (with HUX as the crossover operator) as our benchmark since in two
previous studies we showed that CHC outperformed a traditional GA for functions
f1-f12 (Eshelman, 1991; Eshelman & Schaffer, 1991).* We ran CHC using BLX-0.5

8No version of the bit-climber was able to find the optimum for functions 8, 19, f11,
12 and f13. Furthermore, by shifting both axes by a small amount so that the optimum
is no longer at the origin, functions f6 and 7 become hard for the bit-climber relative to
the GA.
_*For 10 of the 12 functions we were not able to find any parameter settings for a

196 Eshelman and Schaffer
Table 2: Function Summary

fnc [np [bpp [len [ep | ber description

f1 3 10| 30| N | E | parabola

2 2 12| 24| Y | H | Rosenbrock’s saddle

3 5 10| 50 | N | E | stair steps

f4 | 30 8 1240 | N | H | quadratic with noise

5 2 17| 34 | Y | E | Shekel’s foxholes

6 2 22 | 44 | Y | M | sine envelope sine wave
f7 2 22| 44| Y | M | stretched V sine wave

f8 16 4| 64| Y | H | FIR filter

f9 30 9 1150 { Y | H | 30-city TSP, sort representation
f11 | 20 91100 | N | H | needle on a plateau

f12 | 20 9 | 100] N | H | deceptive

f13 | 10 8] 80| Y | H |10 linear equations

f14 | 45 10 1 450 | Y | M | dynamic control problem

fnc function

np number of parameters

bpp bits per parameter

len string length

ep epistasis among parameters (Yes, No)

ber bit-climber rating (Easy, Moderate, Hard)

and HUX on the 13 functions, halting each run when either the optimum was found
or 50,000 evaluations had been completed. (Since 4 is noisy, it was required to be
only “close” (two standard deviations) to the minimum.) Unlike the failure mode
tests, restarts were enabled for these runs. The results are summarized in Table 3
based on 50 replications. BLX-0.5 did significantly better than HUX for f1, f2, f4,
f13, and f14, whereas HUX did significantly better for functions f3, £5, 6, f11 and
f12. For the remaining three functions there is no significant difference.

The five problems for which BLX-0.5 is the winner are the kind of functions that
one might expect BLX-0.5 to do well on. They are all smooth, continuous functions
(except for the discretization introduced by the representation). f1 and f4 are con-
tinuous and monotonic (in Euclidean space) with independent parameters. In the
other three functions, f2, f13, and f14, there is interaction among the parameters.
12 is continuous and monotonic, but the discretization produces local minima in the
region near the optimum. Based on the fact that a bit-climber can do quite well
on f14, it seems that f14 is also monotonic. f13, on the other hand, seems to have
many local minima. (We tried a variety of hillclimbers on f13, but none of them
did very well.)

traditional GA (tr-GA) so that it outperformed CHC-HUX. The two exceptions were
f1 (the easiest problem in the suite) and f12 (a deceptive problem). For seven of the
functions, f5-f11, CHC performed significantly better. We tested the tr-GA using 840
different combinations of parameter settings for f1-f10, and 20 different combinations for
f11 and 12, and picked the best settings for each function when comparing to CHC. CHC,
on the other hand, was tested using its default parameter settings (population size of 50
and a restart mutation rate of 0.35).

196 Eshelman and Schaffer

Table 2: Function Summary

fnc | np [bpp [len [ep | ber | description

fl 3 10| 30 | N | E | parabola

2 2 121 24 | Y | H | Rosenbrock’s saddle

f3 5 10| 50 | N | E [stair steps

4 30 81240 | N | H | quadratic with noise

5 2 17| 34| Y | E | Shekel’s foxholes

f6 2 22| 44| Y | M | sine envelope sine wave
f7 2 22| 44| Y | M | stretched V sine wave

f8 16 4| 64| Y | H | FIR filter

9 30 51150 | Y | H | 30-city TSP, sort representation
f11 | 20 9 (100 | N | H | needle on a plateau

f12 | 20 5100 | N | H | deceptive

f13 | 10 8| 80 | Y | H |10 linear equations

f14 | 45 10 | 450 | Y | M | dynamic control problem

fnc function

np number of parameters

bpp bits per parameter

len string length

ep epistasis among parameters (Yes, No)

ber bit-climber rating (Easy, Moderate, Hard)

and HUX on the 13 functions, halting each run when either the optimum was found
or 50,000 evaluations had been completed. (Since f4 is noisy, it was required to be
only “close” (two standard deviations) to the minimum.) Unlike the failure mode
tests, restarts were enabled for these runs. The results are summarized in Table 3
based on 50 replications. BLX-0.5 did significantly better than HUX for f1, £2, f4,
f13, and f14, whereas HUX did significantly better for functions 3, 5, f6, f11 and
f12. For the remaining three functions there is no significant difference.

The five problems for which BLX-0.5 is the winner are the kind of functions that
one might expect BLX-0.5 to do well on. They are all smooth, continuous functions
(except for the discretization introduced by the representation). f1 and f4 are con-
tinuous and monotonic (in Euclidean space) with independent parameters. In the
other three functions, f2, f13, and f14, there is interaction among the parameters.
f2 is continuous and monotonic, but the discretization produces local minima in the
region near the optimum. Based on the fact that a bit-climber can do quite well
on f14, it seems that f14 is also monotonic. 13, on the other hand, seems to have
many local minima. (We tried a variety of hillclimbers on 13, but none of them
did very well.)

traditional GA (tr-GA) so that it outperformed CHC-HUX. The two exceptions were
fl (the easiest problem in the suite) and f12 (a deceptive problem). For seven of the
functions, f5-f11, CHC performed significantly better. We tested the ir-GA using 840
different combinations of parameter settings for f1-f10, and 20 different combinations for
11 and f12, and picked the best settings for each function when comparing to CHC. CHC,
on the other hand, was tested using its default parameter settings (population size of 50
and a restart mutation rate of 0.35).

~

Real-Coded Genetic Algorithms and Interval-Schemata 197

Table 3: Performance tests

Mean number of trials to find optimum

BLX-0.5 sem HUX sem

f1 874 20 1089 25
2 4893 357 9065 591
£3 2005 119 1169 27
f4 983 24 1948 97
f5 5561 588 1896 38
f6 14736 1998 6496 725
f7 3425 68 3634 291
f8 5822 522 7279 515

Mean performance

9 424.6 0.3 429.2 3.5
f11 1.5 0.2 0.0 0.0
f12 9.0 0.3 1.2 0.1
13 21.7 24 61.8 11.2
f14 | 16241.2 30.1 | 38272.4 1039.0

The five cases for which BLX-0.5 lost are more instructive. BLX-0.5s poor perfor-
mance on f11 and f12 is no surprise, since neither one has continuous variables with
the sort of gradualness that BLX-0.5 can exploit. f11 consists of a 20 independent
5-bit genes, each of which is a needle on a plateau lying at one extrema. f12 consists
of 20 independent 5-bit genes, each of which is deceptive. {3, like f11, also contains
plateaus. Each of its 5 independent 10-bit genes has more structure than those
of f11, but next to the optimum value there is a small plateau that gives BLX-0.5
some problems. (Each gene consists of 12 plateaus or steps, the optimum step being
at one extrema, and only 10% as large as the previous step.) f5 consists of evenly
spaced wells with sloped floors sunk in a plateau. Thus, the optimum value and the
24 suboptima are up against cliffs.

BLX-0.5’s poor performance on f6 is harder to explain. It is a noiseless, contin-
uous function without any plateaus or cliffs. On examination, it turns out that
f6 illustrates not a defect in BLX-0.5 so much as a fortuitous advantage presented
to HUX by the representation chosen. Since we believe that this is an important
phenomenon, we will examine 6 in some detail.

Figure 3-a shows a 2D cross section through the origin of 6. f6 is cylindrically
symmetric about the z axis. Figure 3-b shows a small region of f6 around the origin
as seen from “above”. The point in the center is the global optimum, and the
concentric circles marked with dashed lines are the regions of the second, third, and
fourth best local optima (counting from the center). The concentric circles marked
with solid lines are the peaks of the ridges that separate the local optima.

Figure 3-c plots the points generated and evaluated during a single run of CHC
using HUX and Figure 3-d plots the subset of points generated that are accepted
into the parent population by replacing the worst members. Figures 3-e and 3-f
show corresponding plots for BLX-0.5. Figures 3-c and 3-e dramatically illustrates
the difference in how schemata are sampled via a SPGA and an IPGA—patterns

198 Eshelman and Schaffer

3—a:

2.0

f6 cross section

=100 -80 ~80 -40 =20 o 20 40 80
X

3—c: HUX Generated
1Y +
6 |— L

[- :- ‘
3 - N vt ‘."‘,‘iA :

. i

f6 top view

s .

9

8 }—
L ;

3 b

- L

0 — »f’. A f

s = feio

-8 —

-9 I N TN BT N N [
~9 -6 -3 ¢ 3 8

X

BLX-0.5 Accepted

g . C e et

-] -6 ~3 ¢} 3 6

Figure 3: Function 6

Real-Coded Genetic Algorithms and Interval-Schemata 199

vs intervals. One can see the outline of a grid-like structure filling much of Figure
3-c but not 3-e. (Keep in mind that the source (i.e., parents) of the points shown
in Figures 3-c and 3-e are some of the points in figures 3-d and 3-f.)

To really understand the differences between the two search algorithms a dynamic
dimension is needed. Both algorithms tend to get trapped in the best suboptimal
region indicated by the inner, dashed circle in Figure 3-b. And both tend to favor
points in this inner circle that intersect the x and y axes, although this tendency
seems to be much stronger with HUX.5 Given that good points tend to cluster in
these areas, all crossover needs to do to put a point in the central region, where
the global optimum resides, is to recombine a point in the (0, 3) region with a
point in the (3, 0) region (for example). This would be easy to do with parameter-
bounded crossover, but it turns out that in this case it isn’t that hard with uniform
crossover (HUX) either. The reason is that the function was fortuitously discretized
so that the spacing between the concentric circles is nearly a power of 2. (The circle
marking the best suboptima crosses the axes 65820 units from the center which is
very close to 2° = 65536.) Since Gray coded values that are powers of two apart
differ by only two bits (except when they are neighbors), the Gray coded values of
the points where the inner suboptimum circle crosses either of the axes will differ
by only two higher order bits from the optimum point in the center. However, some
of the neighboring points in this suboptimal region will differ from the optimum
by only one bit. By shifting both the axes by an amount that is not a multiple
(or a near multiple) of the distance between concentric circles, e.g., 214, the points
in the best suboptimal region will always differ from the optimum by at least two
bits. This makes the problem somewhat harder for HUX. The grid-like pattern
generated by HUX for the shifted problem is similar to that shown in figure 3-c
except the spacing between “lines” is half as much as before (see Figure 4). BLX-
0.5’s performance is not affected, but HUX’s performance deteriorates to that of
BLX-0.5. We can make 6 even harder for HUX by rescaling the problem so that
the distance between “valleys” is one-third of that of the original problem. This
does not affect the performance of BLX-0.5, but HUX now does significantly worse
than BLX-0.5.

In summary, the experimental data corresponds nicely with the theory. The func-
tions for which BLX-0.5 does worse than HUX are either predicted by theory to be
hard for BLX-0.5, or are cases where HUX has an advantage due to the periodicity
(natural or fortuitous) of the problem.®

*The reason why points tend to cluster along the axes is that in these regions many
new good points can be generated by changing one parameter value by a small amount
whereas in regions that intersect lines at 45° to the axes good neighboring points can be
generated only by changing both parameters by nearly equal and small amounts.

®L. Davis has discovered a similar phenomenon where a choice of representation (e.g.,
symmetrical about the origin) can make the problem easy for a bit-climber (Davis, 1991b).
A SPGA, however, is much much more robust in this respect—there are many more ways
to.fortuitously introduce patterns which it can exploit.

Eshelman and Schaffer

4—a: HUX Generated 4—-b: HUX Accepted
1] 9
ol M _. ‘~ - .. - I o
> - 3}’-‘!"“\#&’ - . ~ A
01— oy e o .=
- HOBEE s 5 - i ‘
-3 b R g{.".{:_.; -t -3 -
-6 | o . e) -6 |—
- RYE -
-9 P S R 11 N 9 T I T T BN A
-8 -8 -3 4] 3 [} @ -9 -6 -3 0 3] 9
X X

Figure 4: Function f6-shifted (output re-centered)

5 CROSSOVER VERSUS MUTATION

Although we are not making any claims about the general superiority of blend
crossover, or BLX-0.5 in particular, the results of the empirical tests we have con-
ducted have convinced us that BLX-0.5 is a powerful operator. It might be ques-
tioned, however, as to what kind of operator it really is. In particular, is BLX-0.5
really a crossover operator or is it more like a mutation operator? If one insists
upon looking at BLX-0.5 from the symbol-schemata point of view it will not appear
to qualify as a crossover operator. Even from the point of view of our interval-
schemata framework, it fails to fully qualify as crossover—for unlike BLX-0.0, not
all the interval-schemata commonly containing the parents are preserved in the
offspring. In Radcliffe’s terminology, BLX-0.5, unlike BLX-0.0, is not strictly a
respectful recombination operator (Radcliffe, 1991). But before excommunicating
BLX-0.5 from the growing communion of crossover operators, it is important to ask
the converse question as to how it differs from mutation.

Unlike the typical mutation operator used with a real-coded GA, BLX-0.5’s “step-
size” is self-adjusting, and is a function of the extent to which the population is
converged. If it is a mutation operator, it is a very special mutation operator that
shares with crossover the property of increasingly focusing search. There are search
algorithms in the literature that do use a dynamically adjusting step-size, so this
won’t necessary put BLX-0.5 in the crossover category (Beale & Bentley, 1984; Back,
Hoffmeister & Schwefel, 1991). But unlike these other operators BLX-0.5 does not
use aggregate information to determine the step size, but like crossover, uses the
specific information contained in the parents being paired, i.e., in Radcliffe’s termi-
nology, it preserves some of the locality formae common to both parents (Radcliffe,
1991). This is an important feature that can easily be illustrated by an example.
Suppose that the function has two parameters coded as two intervals. Further-
‘more, suppose that there are two good regions in the search space—one where both

Real-Coded Genetic Algorithms and Interval-Schemata 201

parameters have values at the low extreme and the other where both parameters
have values at the high extreme. If the population is about evenly divided between
instances from both these regions, then any mechanism that bases the mutation
step-size on aggregate statistics is going to have a difficult time focusing in on the
good regions. On the other hand, BLX-0.5 will have difficulty only when the parents
are from different regions. This will only happen half the time. The other half the
time parents will be chosen from the same region and search will progress.

The important point is that BLX-0.5, like all true crossover operators, but unlike
mutation operators, including ones that are dynamically adjusted, implicitly ex-
ploits higher order correlations. Genes are not adjusted simply on the basis of the
aggregate value of other instances of the same gene. Crossover implicitly takes into
account the interaction among the genes when generating new instances. This is
the source of crossover’s power as a search operator.

6 CONCLUSION

With the new tool of interval-schemata, the reasons behind the empirical successes
reported for real-valued GAs can now be better understood. Both IPGAs and
SPGAs have the property of implicit parallelism. They differ in their biases. IPGAs
exploit local continuities, whereas SPGAs exploit discrete similarities. It is natural
to expect that for different problems different biases will provided a competitive
advantage.

One future line of research is to explore an algorithm that uses both crossover
operators, creating half the children using BLX-0.5 and half using HUX. Preliminary
results suggest that the performance of an algorithm using both operators is better
than the average of the performances of each operator used separately, and on some
problems, e.g., f6-shifted, performs better than either alone.

References

H. J. Antonisse. (1989) A New Interpretation of Schema Notation that Overturns
the Binary Encoding Constraint, Proceedings of the Third International Conference
on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 86-91.

T. Back, F. Hoffmeister & H. Schwefel. (1991) A Survey of Evolution Strategies,
Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 2-9.

G. O. Beale & S. E. Bentley. (1984) Parameter Estimation Using Microproces-
sors and Adaptive Random Search Optimization, JEEE Transactions on Industrial
FElectronics IE-31, 1 85-89.

L. Davis. (1991a) Hybridization and Numerical Representation, in The Handbook
of Genetic Algorithms, L. Davis (editor), Van Nostrand Reinhold, New York, 61-71.

L. Davis. (1991b) Bit-Climbing, Representational Bias, and Test Suite Design,
Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan
Kaufmann, San Mateo, CA, 18-23.

202 Eshelman and Schaffer

L. J. Eshelman. (1991) The CHC Adaptive Search Algorithm: How to Have Safe
Search When Engaging in Nontraditional Genetic Recombination, in Foundations
of Genetic Algorithms, G. J. E. Rawlins (editor), Morgan Kaufmann, San Mateo,

CA, 265-283.

L. J. Eshelman & J. D. Schaffer. (1991) Preventing Premature Convergence in
Genetic Algorithms by Preventing Incest, Proceedings of the Fourth International
Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 115-122.

D. B. Fogel & J. W. Atmar. (1990) Comparing Genetic Operators with Gaussian
Mutations in Simulated Evolutionary Processes Using Linear Systems, Biological

Cybernetics 63, 111-114.

D. E. Goldberg. (1990) Real-Coded Genetic Algorithms, Virtual Alphabets, and
Blocking, IIiGAL Report 90001, Ilinois Genetic Algorithms Laboratory Dept. of
General Engineering University of Illinois at Urbana-Champaign, Urbana, IL.

D. E. Goldberg. (1991) The Theory of Virtual Alphabets, In Parallel Problem Solv-
ing from Nature, H. P. Schwefel and R. Manner (editors), Springer-Verlag, Berlin,
13-22.

C. Z. Janikow & Z. Michalewicz. (1991) An Experimental Comparison of Binary and
Floating Point Representations in Genetic Algorithms, Proceedings of the Fourth
International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo,

CA, 31-36.

N. J. Radcliffe. (1990) Genetic Neural Networks on MIMD Computers, Ph.D. Dis-
sertation, Dept. of Theoretical Physics, University of Edinburgh, Edinburgh, UK.

N. J. Radcliffe. (1991) Forma Analysis and Random Respectful Recombination,
Proceedings of the Fourth International Conference on Genetic Algorithms, Morgan

Kaufmann, San Mateo, CA, 222-229.

J. D. Schaffer, R. A. Caruana, L. J. Eshelman & R. Das. (1989) A Study of Control
Parameters Affecting Online Performance of Genetic Algorithms for Function Opti-
mization, Proceedings of the Third International Conference on Genetic Algorithms,
Morgan Kaufmann, San Mateo, CA, 51-60.

J. D. Schaffer, L. J. Eshelman & D. Offutt. (1991) Spurious Correlations and Pre-
mature Convergence in Genetic Algorithms, in Foundations of Genetic Algorithms,"
G. J. E. Rawlins (editor), Morgan Kaufmann, San Mateo, CA, 102-112.

N. N. Schraudolph & R. K. Belew. (1991) Dynamic Parameter Encoding for Genetic
Algorithms, Technical Report LAUR90-2795, Los Alamos N ational Laboratory, Los
Alamos, NM.

C. G. Shaefer. (1987) The ARGOT Strategy: Adaptive Representation Genetic
Optimizer Technique, Genetic Algorithms and Their Applications: Proceedings of
the Second International Conference on Genetic Algorithms, Lawrence Erlbaum

Associates, Hillsdale, NJ, 50-58.

A. Wright. (1991) Genetic Algorithms for Real Parameter Optimization, in Foun-
dations of Genetic Algorithms, G. J. E. Rawlins (editor), Morgan Kaufmann, San
Mateo, CA, 205-218.

